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Silva, William A. (M.S., Aerospace Engineering Sciences)

An Energy-Aware Trajectory Optimization Layer for sUAS

Thesis directed by Prof. Eric Frew

The focus of this work is the implementation of an energy-aware trajectory optimization

algorithm that enables small unmanned aircraft systems (sUAS) to operate in unknown, dynamic

severe weather environments. The software is designed as a component of an Energy-Aware Dy-

namic Data Driven Application System (EA-DDDAS) for sUAS. This work addresses the challenges

of integrating and executing an online trajectory optimization algorithm during mission operations

in the field. Using simplified aircraft kinematics, the energy-aware algorithm enables extraction of

kinetic energy from measured winds to optimize thrust use and endurance during flight. The opti-

mization layer, based upon a nonlinear program formulation, extracts energy by exploiting strong

wind velocity gradients in the wind field, a process known as dynamic soaring. The trajectory

optimization layer extends the energy-aware path planner developed by Wenceslao Shaw-Cortez

[16] to include additional mission configurations, simulations with a 6-DOF model, and validation

of the system with flight testing in June 2015 in Lubbock, Texas.

The trajectory optimization layer interfaces with several components within the EA-DDDAS

to provide an sUAS with optimal flight trajectories in real-time during severe weather. As a result,

execution timing, data transfer, and scalability are considered in the design of the software. Severe

weather also poses a measure of unpredictability to the system with respect to communication

between systems and available data resources during mission operations. A heuristic mission tree

with different cost functions and constraints is implemented to provide a level of adaptability to

the optimization layer.

Simulations and flight experiments are performed to assess the efficacy of the trajectory op-

timization layer. The results are used to assess the feasibility of flying dynamic soaring trajectories

with existing controllers as well as to verify the interconnections between EA-DDDAS compo-
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nents. Results also demonstrate the usage of the trajectory optimization layer in conjunction with

a lattice-based path planner as a method of guiding the optimization layer and stitching together

subsequent trajectories.
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Chapter 1

Introduction

1.1 Motivation

Usually referred to as “drones” by the media and public, small unmanned aircraft systems

(sUAS) have been responsible for launching a rapidly growing industry that aims to perform sens-

ing or surveillance tasks that are regarded as dangerous or expensive for humans [15]. Industrial

applications for fixed-wing platforms include agricultural crop management, high-frequency aerial

photography, and persistent weather observation, to name a few. With the complexity of these

systems considered, industry has regarded sUAS platforms as ”sensors in the sky” that can pro-

vide real-time information about our environment [20]. Fixed-wing sUAS can carry an advantage

over quadrotor systems with longer endurance, increased range, and higher cruise velocity. In

relatively open skies, these benefits enable greater mission coverage area with an ability to per-

form greater duration persistent sensing missions. However most sUAS are power-limited by the

on-board battery for aircraft performance. Greater sUAS endurance is needed to make several

conceptual applications feasible.

Attempts to address sUAS relatively short endurance have been made, particularly within

the military sphere [2]. Refueling autonomous sUAS with another aircraft has proven to be a

challenging task whose complexity often exceeds practicality and is not applicable to electric motor

aircraft. Laser-based systems have been proposed and tested in which a high-power beam is focused

on a photovoltaic array attached to the underside of an sUAS [15]. These systems are not only

costly, but also ineffective in long-range applications or inclement weather that would obstruct
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direct line-of-sight. These strategies’ drawbacks stem from generating power on the ground and

then attempting to transfer it to the vehicle while in flight.

Soaring is a flight technique that extracts wind energy from the immediate surrounding

environment and converts it to aircraft potential. Wind is an abundant source of kinetic energy

in the atmosphere that can be effectively harnessed given sufficient knowledge of the environment.

Soaring exploits the wind by gaining potential energy from wind or thermals and spends this

potential to stay aloft. Based on the wind direction, magnitude, and gradient the sUAS executes

maneuvers to ensure aircraft sink rate is less than the climb provided by the wind [16].

Figure 1.1: Dynamic Soaring [4]

Developing optimized dynamic soaring trajectories is a well-researched topic [1, 3, 10] and has

led to several proposals for harnessing wind energy to improve sUAS performance. However, the

majority of existing work fails to address the implementation of such a trajectory optimization layer

for use in field testing to evaluate performance in a non-simulated environment. Developing a flight

system architecture that incorporates online planning and control algorithms poses several practical
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software and hardware implementation challenges. Such a system must be robust to changing

environmental conditions, must be adaptable for unexpected communication interruptions, and

adapt to several mission profiles.

Figure 1.2: Dynamic Soaring Trajectory in boundary layer wind profile [18]

Related works have investigated using optimization to develop soaring trajectories [1, 3,

21, 14, 16]. These works examine the theoretical problem formulation for nonlinear optimization

problems by evaluating different cost functions that aim to increase flight endurance. Most works

evaluate generated trajectories by comparing them to a baseline Monte Carlo simulation. Bird

and Langelaan [1] do demonstrate successful dynamic soaring within a hardware in the loop (HIL)

environment. However, a simulated shear ridge is assumed for the wind simulations and all the

trajectories are computed a priori. While this requires less online computation, the available library

of trajectories may not contain a suitable match for the current wind conditions during flight.

Other works use Rapidly Exploring Random Tree-like (RRT-like) path planners to develop
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optimal trajectories [9]. This heuristic approach develops online soaring trajectories while simulta-

neously building a map of the wind environment. That work does admit that a wind map generated

solely from on-board wind data using a Gaussian process limited dynamic soaring efficiency during

the initial stages of flight. This work also considered a guidance and control strategy developed

upon previous path planning work. This work does not consider performance during actual flight.

Another paper explores the use of dynamic soaring trajectories for performing a surveillance

mission [6]. The work is based upon utilizing Dubins vehicle paths which represent a simplified

model for an sUAS. Similarly to Langelaan, this work uses a best-fit approach, drawing from a

library of Dubins curves to generate a feasible candidate trajectory.

This work focuses on the implementation of a dynamic soaring trajectory layer as a component

of an Energy-Aware Dynamic Data Driven Application System (EA-DDDAS) and addresses the

challenges of operating such a modular component in an online system [5, 17]. The trajectory

optimization approach builds upon Wences Shaw-Cortez’s work [16] in developing dynamic soaring

trajectories by reformulating a nonlinear constrained optimization problem. This work will present

the scalability of the layer by investigating numerous mission profiles, demonstrate robust operation

within a complex tornadic storm simulation, discuss implementation challenges and solutions, and

finally present flight results of the EA-DDDAS in operation.

1.2 Current Work

The goal of this work is to implement a trajectory optimization layer that enables persistent

sampling and surveillance trajectories for sUAS in dynamic, previously unknown weather environ-

ments. This work examines implementation details for operating an online trajectory optimizer

and presents simulation and experimental results. This work evaluates the feasibility of operating

a trajectory optimizer in conjunction with a path-following controller in dynamic flight conditions.

One of the primary challenges in planning trajectories during flight is generating an appropri-

ate length trajectory with sufficient lead time for the aircraft controller. A typical mission involves

approaching a goal area, possibly loitering, and returning to the starting location. Attempting
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to perform a nonlinear optimization on such a long time-horizon mission proves to be infeasible

with limited computational resources and time. For this reason, the long-term horizon planning

is delegated to a lattice-based path planner that provides the trajectory optimization layer with

an intermediate goal and initial trajectory. This allows for rapid re-planning of the mission if the

wind environment changes without interrupting the near-term trajectory optimization process. By

allowing a path planner to run on a longer time horizon, the trajectory optimization layer can stitch

together subsequent trajectories during flight.

The trajectory optimization cost functions are divided into guidance and loitering types.

The guidance mission is formulated to approach a goal while minimizing time and/or thrust. The

loitering mission is concerned with maximizing endurance while remaining in a pre-allocated region.

The EA-DDDAS system consists of several components to enable energy-aware flight (Figure

1.3).

Figure 1.3: EA-DDDAS Block Diagram

The trajectory optimization layer, operated by the mobile ground station (MGS), acts as



www.manaraa.com

6

the interface between the lattice-based planner and the autopilot control logic. The proposed

implementation parses the results from the lattice-based path planner into optimal dynamic soaring

segments. Once deemed optimal, the segment is passed to the aircraft path following controller

and the next segment of the flight is examined next. The trajectory optimization layer has limited

scope within the ultimate mission goal and is only concerned with generating near-time horizon

optimal trajectories (on the order of one to three minutes).

1.3 Thesis Contributions

(1) Restructuring existing trajectory optimization code for scalability and real-time use:

(a) Functionality to quickly add new optimization constraints and cost functions;

(b) Functionality to access a wind database and linearly interpolate wind during opti-

mization;

(2) Formulation of a system architecture between existing components of the EA-DDDAS:

(a) Formulation of guidance or loiter mission logic implemented during flight;

(b) Implementation of a wind database that stores all recorded data during a flight;

(c) Implementation of a server-client architecture between the path planner and trajectory

optimization layer;

(3) Analysis and assessment of trajectory optimization layer:

(a) Analysis of soaring trajectories in a severe storm simulation;

(b) Analysis of a basic path following controller;

(c) Assessment of new penalty functions;

(d) Assessment of the system operating during actual flight;
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1.4 Thesis Outline

The system model, equations of motion, and optimization problem formulation are briefly

summarized in Chapter 2. Chapter 3 discusses the software and hardware implementation details of

the trajectory optimization layer. Chapter 4 demonstrates the system operation simulated within

a severe storm environment. Chapter 5 presents and discusses experimental flight results from the

Lubbock, Texas deployment of summer 2015. Last, Chapter 6 provides concluding remarks and

future work.
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The Optimization Problem

This chapter defines the nonlinear optimization problem to be solved in the trajectory opti-

mization layer. The concept of guidance and loiter trajectories are discussed within the context of

a mission selection algorithm.

2.1 Nonlinear Program

Energy-aware trajectory generation in dynamic environments is well-suited as a nonlinear

program due to the high degree of non-linearity in aircraft kinematics and relatively large dimension

of the aircraft state. The problem can be formulated as a general non-linear optimization problem

(NLP) in which a cost function is minimized subject to a set of constraints. The cost function

contains aircraft state and control variables that represent or directly affect the aircraft energy state

while the constraints enforce aircraft kinematics and mission-specific boundaries. The solution space

for an energy-aware trajectory optimization problem was found to be highly nonconvex which posed

challenges in dealing with tightly clustered suboptimal local minima. These issues are addressed

by reformulating the cost function and constraints to prevent the generation of sub-optimal or

infeasible trajectories. This section is largely a summary of Shaw-Cortez’s work in establishing an

optimization framework using a simple kinematic aircraft model [16].



www.manaraa.com

9

2.1.1 Aircraft Kinematics

In the context of the optimization problem, the sUAS is modeled as a three-dimensional

point-mass aircraft [16]. This maintains realistic optimization convergence times during mission

operation. The full aircraft state is described by seven kinematic states and three control inputs.

The aircraft inertial position is described by a right-handed North-East-Down coordinate system

defined as x, y, and z, respectively (Figure 2.1). Aircraft velocity is described by the magnitude

of the air-relative velocity vector, Va. The air-relative flight-path angle, γa, and air-relative course

angle χa define the aircraft’s pointing with respect to the wind. To fully define the aircraft attitude,

roll angle φ is included as the final state. In this model, the flight-path angle also represents the

angle of attack because the coefficient of lift is a directly controlled input. The aircraft state vector

is defined as:

x(t) =

(
x y z Va γa χa φ

)T

(2.1)

Aircraft inputs are defined by the roll rate, φ̇, coefficient of lift, CL, and thrust, T . The roll

rate can be controlled by aileron deflections, the coefficient of lift by elevator deflections, and thrust

by motor throttle. The three aircraft inputs are defined as:

u(t) =

(
φ̇ CL T

)T

(2.2)

Defining air-relative flight path and course angles provides a relationship between the inertial

and wind frames. As such, winds must also be defined. Wind inertial velocities are defined as wx,

wy, and wz in the vector

w =

(
wx wy wz

)T
(2.3)

and the corresponding Jacobian, Jw is

Jw =


∂wx
∂x

∂wx
∂y

∂wx
∂z

∂wy

∂x
∂wy

∂y
∂wy

∂z

∂wz
∂x

∂wz
∂y

∂wz
∂z

 . (2.4)
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Figure 2.1: UAS Diagram

To transform the wind frame into the inertial frame, we use Ri/w and e1 as defined in [16].

We define the inertial velocity as ṗ where

ṗ = ṗa + w = Ri/wVae1 + w (2.5)

To calculate the primary aerodynamic forces lift (L) and drag (D), some basic aircraft prop-

erties must be defined. For the trajectory optimization problem, the aircraft is defined by its mass

m, wing area S, Oswald’s efficiency number e, aspect ratio AR, and zero-lift drag coefficient Cd0 .

Environmental properties considered are the acceleration of gravity, g, and the density of air ρ,

which are both assumed to be constant.

Using a transform to rotate from the wind frame into the inertial frame, we can derive the

aircraft kinematic model as a function of the previously defined aircraft states and control inputs.

The derivation is clearly outlined in Shaw-Cortez’s thesis [16], therefore only the final equations will

be listed here. Note that the equations of motion do not include the second control input variable

u2 because CL is a control input and not a state (as it previously was in Shaw-Cortez’s work).

The aircraft kinematic equations of motion are as follows:
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ẋ(t) =



ẋ

ẏ

ż

V̇a

γ̇a

χ̇a

φ̇



=



Va cosχa cos γa + wx

Va sinχa cos γa + wy

−Va sin γa + wz

−g sin γa + T−D
m −


cos γa cosχa

cos γa sinχa

− sin γa


T

Jwṗ

1
Va

(−g cos γa + L
m cosφ+


sin γa cosχa

sin γa sinχa

cos γa


T

Jwṗ)

1
Va cos γa

( Lm sinφ+


sinχa

− cosχa

0


T

Jwṗ)

u1



= f(xt,ut,wt) (2.6)

2.1.2 Nonlinear Optimization Problem (NLP)

The nonlinear program is formulated as a nonlinear optimization problem that can be solved

numerically, held to a pre-defined feasibility and optimality tolerance. The generic nonlinear pro-

gram is constrained by the set F(z) which consists of five groups of constraints. The first group,

Ff (z), are continuous aircraft kinematics in equation (2.6) that are propagated over time and

enforced by the Forward Euler approximation scheme

xk+1 = xk + f(xk,uk,wk)∆t, ∀k ∈ [0, N − 1]. (2.7)

The kinematic constraints are defined as

Ff (z) = xk+1 − xk − f(xk,uk,w)∆t, ∀k ∈ [0, N − 1]. (2.8)

The NLP is formulated by representing the continuous dynamics by N collocation points spaced

evenly in time by the duration ∆t. The decision vector z for the NLP includes the time interval,
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Figure 2.2: A discretized trajectory transitioning to the next.

system states at the collocation points, and system inputs:

z =

(
∆t x0 u0 x1 u1 ... xN−1 uN−1 xN

)T

(2.9)

in which ∆t is part of the solution (Figure 2.2). Although x0 and u0 are included in the decision

vector, they may be constrained to certain values as function of the current aircraft position and

attitude obtained from GPS.

The system bounds, Fb(z) ≤ 0, establish the system limits, such as geographical boundaries

as well as aircraft properties. Periodic constraints, Fp(z) = 0, require the optimization program to

match certain state variables from the initial and final trajectory node. The final two constraint

categories, Fi(z) ≤ 0 and Fo(z) ≤ 0, are initial conditions and other constraints respectively.[16].

Fp(z) and Fb(z) are the periodic and boundary constraints respectively. The periodic constraints

are defined as

Fp(z) ≤

xN − x0

uN − u0

 , ∀k ∈ [0, N − 1]. (2.10)

As with the cost function, the boundary constraints are unique to each type of mission flown but

often constrain final and initial states to obtain a desired trajectory behavior. Periodic constraints

may only apply to certain states depending on the mission objective. Since the primary objective of

generating an energy-aware path is reduce or eliminate battery power consumption, we will always
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include the control input thrust, T , into the cost function formulation as follows,

J(z) =
N−1∑
k

(T 2
k + hb(z))+ ht(z) (2.11)

where hb and ht are mission-specific cost terms. hb represents cost terms that are summed over the

entire trajectory while ht is a terminal cost only added once per cost evaluation. In summary, the

discrete optimization problem is formulated as

min J(z)

s.t. Ff (z) = 0

Fp(z) ≤ 0

Fb(z) ≤ 0

Fi(z) ≤ 0

Fo(z) ≤ 0

(2.12)

.

2.2 Energy Extraction

To better understand the relationship between the aircraft state and its ability to extract

energy from the wind, an energy model must be defined. We can begin with a basic potential and

kinetic energy equation that models the air-relative energy of the aircraft’s mass,

ea = −gz +
1

2
V 2
a . (2.13)

In other words, this represents the specific air-relative energy of the aircraft. In order to determine

which of our defined aircraft states will have an impact on the energy extracted from the wind, we

can take the derivative of equation(2.13) with respect to time. This yields an air-relative power

equation, or power to weight ratio,

ėa = −Va
D

m
+ Va

T

m
− gwz − V a


cos γa cosχa

cos γa sinχa

− sin γa




∂wx
∂x

∂wx
∂y

∂wx
∂z

∂wy

∂x
∂wy

∂y
∂wy

∂z

∂wz
∂x

∂wz
∂y

∂wz
∂z




ẋ

ẏ

ż

 . (2.14)
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This equation contains four distinct terms, with two being functions of the wind field. The first

term captures the energy lost to drag and the second term captures the energy gained due to thrust

from the aircraft propeller. The third term is known as the static soaring energy contribution. This

term reflects the energy gained from vertical wind motion in the environment. The last term is

known as the dynamic soaring contribution. This term reflects the energy extracted from the wind

gradient itself. This last term is also a function of the aircraft’s air-relative pose and inertial speed.

The relationship between the gradient values, aircraft pose, and ground speed are not immediately

obvious to inspection. For this reason, the problem is solved by a nonlinear optimization problem

to minimize thrust used over the entire trajectory. This makes the implicit assumption that by

lowering thrust, the aircraft will maximize the energy extracted from the wind and wind gradient.

However, this air-relative specific energy rate equation fails to capture the chemical energy stored

by the battery and its relationship with the thrust state. It should be noted that this term would

be especially important if a battery’s finite capacity is taken into account for the optimization.

In this work, although the optimization is minimizing thrust usage and therefore battery power

consumption, the explicit model relationship is not examined and the battery capacity is assumed

to be infinite.

2.3 Guidance and Loiter Missions

This work is focused on implementing an energy-aware trajectory optimization layer in the

context of performing persistent sampling missions in adverse conditions. The key performance

metric for evaluating trajectories is the amount of thrust used, or energy consumed, by the aircraft

to fly a mission. In most severe weather sampling deployments the observation goal area is not

within the immediate vicinity of the aircraft launch site. The guidance type mission addresses this

issue by generating a trajectory segment that directs the aircraft from its current location towards

the observation goal (Figure 2.3a). The guidance mission cost and constraints are formulated to

guide the aircraft towards a desired goal point in inertial space. The loiter type mission generates

a trajectory in which the aircraft remains in or near a predefined sampling radius circumscribing
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(a) Guidance Mission (b) Loiter Mission

Figure 2.3: Loiter and Guidance Missions

an observation goal area (Figure 2.3b). As recognized by Shaw-Cortez[16], the key challenge to

implementing the complete sampling and surveillance mission is generating time- and situation-

appropriate trajectory segments in real-time and stitching them together online.

For both types of missions, and their respective formulations, the mission objectives do not

mandate zero thrust. If desired, a zero-thrust trajectory can be enforced by constraining the thrust,

Tk, to zero for all time. R is a desired observation radius that can be set by the user at the beginning

of the mission.

As an example, we examine the generic guidance and loiter cost functions in parallel. The

cost function and constraint formulation for each respectively is

Guidance

min J(z) =
∑N−1

k=0 kTT
2
k + k∆t∆t+ kpd

where d = ||pN − p0||

s.t F(z) ≤ 0

(2.15)

Loiter

min J(z) =
∑N−1

k=0 [kTT
2
k + kp(r −R)] + k∆t∆t

where r = ||pk − pg||

s.t F(z) ≤ 0

(2.16)
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Although the generic formulations for the mission look similar, there are some key differences

in their behavior. The guidance cost formulation minimizes thrust over the entire trajectory but

only minimizes the distance, d, from the last point to the goal. On the other hand, the loitering

trajectory minimizes the distance, r, from the trajectory to the goal for each point. Further dif-

ferences can be found in the formulation of the periodic and boundary constraints. The loitering

mission enforces periodicity between the initial and final aircraft states to enable trajectory stitch-

ing. The guidance formulation relaxes these constraints to allow the aircraft to traverse the storm

environment, ensuring that total energy is not lost during the trajectory by constraining airspeed.

2.4 Longer Time-Horizon Missions

One of the primary motivations for developing energy-aware trajectories is the ability to

extend mission life for endurance-limited sUAS platforms. In severe weather sampling missions,

trajectory planning should consider a reasonable finite time-horizon for planning trajectories over

the storm’s duration. One of the limitations to using an NLP in an online algorithm is the relatively

short time horizons over which feasible trajectory solutions can be found. As the allowable range

of dt increases, so does the number of local sub-optimal minima that must be explored by the

NLP. To ensure robustness of the TOL and the trajectories it generates, the allowable range for

∆t is limited, forcing longer trajectories to be divided into segments. In addition to adding local

minima, a longer time-horizon requires a greater number of discretization nodes to ensure a smooth

trajectory. The quadratic constrained optimization sub problem is at least O(n2) with respect to

the number of discretization nodes due to the Jacobian generation step of the optimization routine.

Therefore the problem quickly becomes intractable to solve online during a mission.

To address this issue, a lattice-based planning approach has been developed to generate

high-level path plans. This path planner uses a Dubin’s vehicle model in combination with spatial-

temporal storm data to generate a longer finite time-horizon trajectory that leads to the observation

goal. A Dubin’s vehicle represents a simple dynamic model that tracks position, velocity, and

heading. The solution can be quickly updated to reflect macro-scale storm developments in order
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Figure 2.4: The three layers of the path planning system.

to avoid high-risk areas, such as hail cores, heavy precipitation, or electrical activity. The path

planner provides the TOL with intermediate segments in order to generate optimal local trajectories

which, in turn, are sent to the Guidance Control Layer on-board the aircraft (Figure 2.4). This

division of computational labor allows NLPs to be solved online during a mission.

2.5 Mission Stitching

Once provided a new intermediate goal by the lattice planner, the trajectory optimization

layer requires logic to determine which cost function and set of constraints to setup and solve

the nonlinear optimization problem. A straight-line path from the aircraft location to the goal is

segmented and the TOL generates optimal trajectories for each segment sequentially. The goal

is to provide a feasible, stitched, and energy-optimal trajectory segment for the aircraft before

it finishes its current segment. Trajectories are stitched by constraining the initial state to the

previous trajectory’s final state.

To ensure feasibility, each segment is first optimized using the thrust-inclusive mission. Due

to high wind velocities in severe storms, some regions may be inaccessible to the aircraft even with
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full use of the motor. This optimization run can quickly determine whether the intermediate goal

is reachable, even with non-optimal energy use. Once a baseline trajectory has been planned, each

segment is optimized with the no-thrust cost function and constraints set. If the optimization fails,

gains are subsequently modified and the optimization is run again. This loop is performed until

either an optimal trajectory is found or the aircraft demands a new plan. If the optimization layer

cannot find any suitable trajectories to the intermediate goal point, it notifies the lattice planner

and requests a different intermediate goal point.This process is repeated until the aircraft nears the

observation goal. A threshold is set prior to flight that establishes when the TOL should switch to

a loiter type mission.
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Implementation

This chapter discusses the implementation details of the trajectory optimization layer (TOL)

in the context of an EA-DDDAS operating online in the field. The various software interconnections

to the TOL will be discussed (Figure 3.1) and an in-depth view of the trajectory optimizer will be

explored.

Figure 3.1: A graphical overview of the EA-DDDAS data flow.

3.1 Wind Field Database

The energy-aware trajectory optimization layer requires an efficient method to access the

most up-to-date wind data being provided from dual-doppler radar synthesis and localized aircraft

measurements. Such a system needs to have the ability to write large volumes of data quickly and

also serve rapid function calls from both the trajectory optimization layer and the lattice-based

path planner.

MongoDB is an open-source, NoSQL database software written natively in C++, designed

specifically for writing, indexing, and looking up enormous data sets. The database is based on
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a collection-document schema where each document is a BSON-formatted (binary JSON) item.

Collections can be assigned a compound-index which enables rapid look-up of multi-dimensional

wind, making it ideal for a four-dimensional wind field. MongoDB also supports aggregation

techniques to call large batches of data by loading portions of the database into memory based

upon the nature of the aggregation command. Not only is this useful for simple look-up data calls

but it can be employed to perform operations on large batches of data online in the field.

Within the TOL context, the database is deployed on the same machine as the mission

selection logic and the optimizer, although due to its ability to provide data over a network, it

could be deployed anywhere in the EA-DDDAS framework. The wind database populates its data

from netCDF files generated by the Atmospheric Models for Online Planning software (AMOP).

The AMOP is responsible for regularly generating current and forecasted wind fields sourced from

Ka-radar dual-doppler synthesis data. Indexing automatically begins on the data once it is written,

enabling faster look-ups for the trajectory optimizer and the lattice-based planner.

The wind field database also relieves the optimizer of data stewarding so data can be recorded

regardless of the trajectory optimizer’s status. By allowing the optimizer to only load a relevant

subset of wind for the current trajectory goals, program memory leaks are reduced. This becomes a

significant benefit when the optimization routine is run continuously for hours on end with hundreds

of optimization runs performed consecutively.

The wind field is stored as a spatio-temporal grid over a 10 kilometer by 10 kilometer grid

spanning 250 meters of altitude. The X- and Y-dimensions are gridded into 200 nodes each spaced

by 50 meters. The altitude is separated into 5 levels, also with 50 meter spacing. The data is

forecasted by the AMOP up to 30 minutes with 3 minute spacing between sets (Figure 3.2). The

database is also capable of storing wind field data being collected by on-board sensors, such as a

5-hole probe or a sonde. Interfaces were developed to write data into the wind field from both

netCDF files from the AMOP as well as a JSON stream over a UDP socket from the aircraft. The

data are then accessed by the TOL and any other EA-DDDAS component via a network port on

the machine hosting the wind field database. In this particular setup, since the database resides
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Figure 3.2: Estimated wind data from the AMOP to the wind database. The region containing the
aircraft is finely gridded using linear interpolation.

on the same machine as the TOL, the data are sent via RAM to the TOL for queries.

The database can also store precipitation data collected from 88D products. This data can

provide useful estimates of the storm track and help define no-fly zones where the sUAS could be at

risk from physical damage during flight. Similarly stored on a spatial and temporal grid, the data

can be rapidly updated to provide useful engineering estimates for the EA-DDDAS components.

Although the current trajectory optimization layer does not directly consider precipitation, the

lattice planner can mark these areas as high-risk and avoid sending the aircraft near them. The

database enables both the TOL and the path planner to adjust and re-plan to the moving storm

environment.

From a systems perspective, the MongoDB platform for atmospheric data management is

ideal for providing data access to system components that are spread out in the field of operation.

The database can be read and updated remotely via network link, ensuring that highly localized

wind data collected on-board and dual Doppler synthesis forecast data are recorded when available

and pushed to the rest of the network.
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3.1.1 Wind Interpolation

The wind is stored on a discrete spatial-temporal grid, therefore interpolations are needed to

provide the wind velocities and gradients for any candidate trajectory being evaluated by the

trajectory optimizer. Since millions of these calls must be made online and the dual-doppler

synthesis data is on a relatively large grid scale, a linear interpolation technique is used. The eight

gridded datapoints surrounding the point of interest are acquired from the wind database. Next,

the distance between the point of interest and each grid point is calculated. Eight shape functions

for an eight-node trilinear hexahedron are defined with the origin of the coordinate system residing

in the lower-left corner of the cube (Figure 3.3),

ζ =
xp − x0

xs
η =

yp − y0

ys
µ =

zp − z0

zs
(3.1)

Figure 3.3: Voxel within a gridded wind field.

N1 = (1− ζ)(1− η)(1− µ)

N2 = (1− ζ)(1− η)(µ)

N3 = (1− ζ)(η)(1− µ)

N4 = (1− ζ)(η)(µ)

N5 = (ζ)(1− η)(1− µ)

N6 = (ζ)(1− η)(µ)

N7 = (ζ)(η)(1− µ)

N8 = (ζ)(η)(µ)

. (3.2)

Using these shape functions, we can compute the estimated three dimensional wind vector,

u =

8∑
i=0

Niui v =

8∑
i=0

Nivi w =

8∑
i=0

Niwi (3.3)

where ui, vi, wi are the gridded velocities at the corner i, respectively. To compute the estimated

wind Jacobian we can again turn to the shape functions. Taking partial derivatives with respect
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to the cube coordinates is relatively straight-forward. Once these are calculated, we can finally

compute the estimate of the spatial wind Jacobian,

∂u

∂x
=

8∑
i=0

∂Ni

∂ζ
ui,

∂u

∂y
=

8∑
i=0

∂Ni

∂η
ui,

∂u

∂z
=

8∑
i=0

∂Ni

∂µ
ui

∂v

∂x
=

8∑
i=0

∂Ni

∂ζ
vi,

∂v

∂y
=

8∑
i=0

∂Ni

∂η
vi,

∂v

∂z
=

8∑
i=0

∂Ni

∂µ
vi

∂w

∂x
=

8∑
i=0

∂Ni

∂ζ
wi,

∂w

∂y
=

8∑
i=0

∂Ni

∂η
wi,

∂w

∂z
=

8∑
i=0

∂Ni

∂µ
wi

(3.4)
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3.2 Trajectory Optimizer

The trajectory optimizer is a C++ based code that sets up an NLP optimization problem

and solves it using a commercial solver named Sparse Nonlinear Optimizer (SNOPT). The code

is object-oriented to facilitate further development and expansion. This section will describe the

approach and execution of the main sections of the code.

3.2.1 Parameters

Each problem formulation is defined by a set of four parameters files. Each parameter file

is loaded into memory as a public object within the problem class. This allows the parameters to

be accessed by the SNOPT code as well as any plotting or analysis functionality developed in the

future.

3.2.1.1 Aircraft

The aircraft parameters file defines physical properties and limits of the aircraft such as mass,

wingspan, and bank angle limits to name a few. The aircraft properties for the Tempest UAS are

derived from an Athena Vortex Lattice (AVL) model (Table 3.1). Rate limits and stall speeds are

constrained to more conservative limits to allow for trajectories that can be feasibly tracked by the

autopilot’s inner PID control loops.

3.2.1.2 Gains

The gain parameters file provides a default set of cost function gains for the given problem

(Table 3.2). These gains can be overwritten by the mission selection logic (Section 3.3) during

execution if needed. This file can be easily expanded to add gains for any new cost function

formulations.
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m 5.7419 kg mass
b 3.0671 m wing span
S 0.6282 m2 wing area
e 0.9693 – Oswaldś efficiency factor
AR 14.97 – aspect ratio
Cd0 0.0243 – parasitic drag coefficient
CLmin -0.45 – minimum lift coefficient
CLmax 0.9 – maximum lift coefficient
φmax 45 ◦ maximum bank angle
Vamin 10 m/s minimum airspeed
Vamax 30 m/s maximum airspeed
γmax 20 ◦ maximum air-relative flight path angle

φ̇max 20 ◦/s maximum roll rate
Tmax 0 N minimum thrust
Tmin 56.33 N maximum thrust

Table 3.1: RECUV Tempest parameters from an AVL simulation.

Tk 100 thrust gain
Pk 1 position gain
Vk 0 velocity gain
Ak 0 angle gain
dtk 0 time gain

Table 3.2: A sample set of gains for a guidance mission.

3.2.1.3 Limits

The limit parameters file establishes spatial and temporal limits to the trajectory problem

(Table 3.3). These parameters can be overwritten within the software to allow dynamic geo-fencing

for the trajectory optimization. For example, the minimum and maximum x limits can be set to a

parametric equation to emulate a moving tracker vehicle. The moving bounding box will force the

trajectory optimizer to generate paths that follow the vehicle. Note that because the trajectory

optimizer uses a NED coordinate frame, z is positive in the down-direction.

3.2.1.4 SNOPT

The SNOPT parameters file includes SNOPT-specific parameters such as the number of time-

segments states, states, control inputs, and boundary constraints for the problem (Table 3.4). It
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dtmin 0.05 s minimum dt
dtmax 0.12 s maximum dt
xmin -inf m minimum x
xmax inf m maximum x
ymin -inf m minimum y
ymax inf m maximum y
zmin -inf m minimum z
zmax 0 m maximum z

Table 3.3: Minimum and maximum spatial-temporal limits.

also includes feasibility and optimality tolerances. It is important that these parameters match

the information supplied in the problem-specific source file that defines the objective function and

boundary constraints. The number of states and control inputs will generally remain constant

between problems.

ts 100 number of time steps
nstates 7 number of states
ncontrols 3 number of control inputs
nboundary 12 number of boundary constraints
opttol 1E-4 optimality tolerance
feastol 1E-5 feasibility tolerance

Table 3.4: SNOPT parameters.

3.2.2 Problem

The optimization code parses arguments passed from the mission selection logic code (Section

3.3). These arguments instruct which mission type is to be initialized for the run. An instance of the

base class named “problem” is constructed associated with an inheriting child class corresponding

to the mission type (Algorithm 1). The base class constructor generates the four parameter class

objects as public attributes. A network connection is then established to the wind database and

stores a small wind cache to be robust against a lossy connection to the database. Since the aircraft

kinematics do not differ between mission types, the forward-Euler aircraft constraints are generated

a priori using a C++ symbolic engine that compiles automatically to source code. SNOPT-specific
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variables are initialized and the limits are set on each discrete state for the trajectory. An upper

and lower limit is provided via the SNOPT interface to enforce equality or inequality constraints.

The mission specific constructor provides the mission cost, constraints, and required expressions.

Next, a goal-specific initial trajectory is calculated, and the symbolic sparse gradient is generated.

Algorithm 1 Problem class constructor

Require: goal, mission
1: Generate parameter objects
2: Connect to Wind Field DB
3: Build wind cache
4: Initialize SNOPT
5: Set limits
6: Generate seed trajectory
7: Evaluate sparse Jacobian
8: return instance

3.2.3 Cost and Constraints

The cost and constraints are input to the C++ source code by the user prior to mission start.

The mission-specific child class inherits methods from either a guidance or loiter class which inherits

from the general problem class (Figure 3.4). The objective function is defined by a method named

“cost” that involves a for-loop to sum terms over the entire trajectory. The boundary constraints,

which include periodic constraints and other physical limitations is defined by a method named

“Boundary Constraints”.

3.2.4 Sparse Jacobian

The most challenging portion of setting up an NLP for a complex, multi-constrained problem

is the efficient computation of a sparse Jacobian. The sparse Jacobian is provided to SNOPT in

order to assist with the gradient traversal portion of the SQP algorithm. Since the state vector to be

optimized includes all states and control inputs over all time, the resulting Jacobian is nconstraints =

(nstates + ninputs) ∗ nsteps + nperiodic. For a typical problem, this includes approximately 1600

constraints over 2000 discrete states, resulting in a 3.2 million entry Jacobian. While fortunately,
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Figure 3.4: Class inheritance structure for optimization problems.

most of this matrix is sparse, it is critical to accurately place each entry in the matrix and have it

be adaptable to several different cost functions and boundary constraints, both in formulation and

number (Figure 3.5). The size of the Jacobian grows exponentially with an increase in discretization

steps. To address this scalability and adaptability challenge, a symbolic C++ engine was used

to analyze the symbolic derivatives of the cost function, kinematic constraints, and boundary

constrains for all constraints over all time steps. This sparsity pattern was used to generate a map

relating constraint functions to non-zero entries during numeric evaluation. Unfortunately, as with

most symbolic engines, using a substitution method to calculate numerical results from a symbolic

expression is costly with respect to CPU time. To prevent this, time-generalized versions of the

constraints are created using a map to prevent duplicates. Another map keeps track of the specific

constraint and state that were used to generate the derivative. These time-generalized expressions

are then used to generate and compile C code during execution and link the resulting dynamic

library back to the main code. Now the time-generic versions of all of the constraint derivatives

are available in a C dynamic library for efficient execution. To generate a Jacobian from this

library requires no further logic. The constraint map is used to make the correct function calls

and evaluations from the new C library. While the initial generation of this library takes no more

than a couple of seconds, these libraries can be saved and re-linked upon another execution of the
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optimizer, increasing time savings for future runs.
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Figure 3.5: The Jacobian sparsity pattern for 5 time steps of a guidance mission. The objective
gradient is the top most row.

3.3 Mission Selection Logic

The mission selection logic software is the interface for all network communication between

other EA-DDDAS components and the trajectory optimization layer (Figure 3.6). Written in a

scripting language (Python), this software is easily modifiable to the addition or removal of EA-

DDDAS components in the future development of the program. It is the outer-level controller for

the trajectory optimization runs and also acts as a steward for the wind field database.
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Figure 3.6: Network diagram for the TOL.

3.3.1 Communication with the AMOP

The AMOP regularly generates current and forecasted wind fields sourced from Ka-radar

dual-doppler synthesis data. The mission selection logic acts as a converter for the raw data files

(netCDF format) by sequentially loading them into memory and performing a bulk-write operation

to the wind field database. From preliminary benchmarks, the database is capable of writing

approximately 250,000 entries per second. This is most likely limited by the computer’s 7200 RPM

disk drive. The write performance could be largely boosted by a solid-state drive or a sharded

database cluster across servers.

Fortunately, MongoDB is an ACID (Atomicity, Consistency, Isolation, Durability) database
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that prevents race-condition issues for access during a batch-write operation. The details of the

wind field database are discussed at length in Section 3.1.

3.3.2 Communication with the Lattice Planner

The mission selection logic is responsible for making calls to the extended time-horizon lattice

planner, written in Julia, in order to receive intermediate goal points. To implement this demand

and supply model, a JSON remote procedure call (JSON-RPC) server and client system is used to

handle data communication between the two systems (Figure 3.7).

Figure 3.7: JSON-RPC in the TOL context.

The mission selection logic packages a function request along with the aircraft GPS coor-

dinates. The high-level path planner operates as an RPC server, listening for JSON formatted

function calls to arrive. On a separate thread, the lattice planner is continuously updating its cost

map of the environment to adapt to changing storm conditions. Once a request is received from

the mission selection logic, the lattice planner generates an intermediate goal point and returns the

data across the RPC link. As an RPC client, the selection logic is blocked until an intermediate
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goal point is received, barring a time-out due to disconnection. This interface allows the lattice

planner to generate uninterrupted updates of its own cost map while providing online intermediate

goal points to the mission selection logic. This JSON-RPC framework also handles the complex

timing and blocking requirements that are often needed between two parallel processes that need

to communicate time-sensitive information.

The lattice planner cost update thread also communicates with the MongoDB wind field

server through a TCP/IP link to access wind field data online (Figure 3.6). This communication

link does not run directly through the mission selection logic because there is no guarantee that the

wind field server will be executing on the same hardware as the mission selection logic. In other

words, if the wind field database were moved to a cloud computing system, the software interfaces

between mission selection logic, the lattice planner, and the wind field server would remain the

same.

3.3.3 Calling the Optimizer

After obtaining an intermediate goal and segmenting the trajectory for stitching, the mission

selection logic is responsible for initiating sequential optimization runs (Algorithm 2). The mission

selection logic runs as a while loop until the mission incomplete flag is set to False, implying

that the mission is complete. Each segment is formulated as a function call with arguments that

include the intermediate goal, desired observation radius (if applicable), cost function gains, and

the mission type.

Once an optimal candidate trajectory is returned by the optimizer, the selection logic initial-

izes the next segment at the previous trajectory’s final state. The C++ based optimizer code is

pre-compiled as a dynamic library and loaded into Python as a package. This allows for seamless

function calls and data transfer between the two codes. The optimizer is spawned by the selection

logic as a separate parallel process, allowing the selection logic code to continue performing tasks

while the optimization runs. In the future, this feature could be exploited to run parallel optimiza-

tion runs for a given segment with different gains (Figure 3.8). The best run, measured by the cost
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Algorithm 2 Mission selection logic stitches energy-aware trajectory segments

Require: goal
1: while mission incomplete do
2: loc = obtain aircraft GPS coordinates
3: distance to goal = goal − loc
4: if distance to goal > leg then
5: Run Optimizer(guidance, leg)
6: else if distance to goal > radius then
7: Run Optimizer(guidance, distance to goal - radius)
8: else
9: Run Optimizer(loiter, radius)

10: mission incomplete = False
11: end if
12: if run is optimal then
13: Advance to next leg
14: else
15: Adjust gains, leg and re-run
16: end if
17: end while
18: return trajectory

metric, would be stored and used to initialize the next batch of optimization runs. Another use

could be to plan sequential legs simultaneously and ensure that the state end-points are within a

reasonable limit to allow stitching.

3.3.4 Communication with the Aircraft

The aircraft and mission selection logic communicate GPS information and trajectories us-

ing MAVLink, a well-established UAS communication protocol [11]. This communication link is

facilitated by a cellular LTE connection as it is widely available in the US and allows high-speed

communication over long distances between the sUAS and the mobile ground station. GPS data

is being streamed from the PixHawk autopilot over a UDP socket at 30Hz. The GPS coordinates

are converted to East-North-Up coordinates relative to the Ka-1 radar to provide aircraft loca-

tion in context of the measured wind field. Data is only sent to the PixHawk if a pre-stitched

candidate trajectory has been solved by the optimizer. For preliminary path following tests, the

data is sent as a series of interlaced waypoints and airspeed commands. Adhering to MAVLink
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Figure 3.8: Possible use of the parallel optimization ability.

protocol, the Mission Selection Logic must perform a series of handshakes with the PixHawk via

the UDP socket (Figure 3.9). However, due to high latencies between the MGS and the aircraft,

the MAVLink handshake was not directly possible. A circular buffer algorithm was implemented

to reduce the number of latent connections that the waypoints must travel to reach the PixHawk

autopilot on-board the aircraft.

A circular buffer stores a fixed amount of data and overwrites the oldest data as new data are

provided. This data structure was used because the number of mission waypoints on the PixHawk

is difficult to change without erasing the entire flightplan. Therefore a blank 100 waypoint plan is

written to the aircraft prior to take-off. This plan is then modified in a rolling fashion to provide

the aircraft with a continuous, up-to-date flight plan. The buffer was chosen to be 100 waypoints

because it can store a planned segment of roughly 40-80 waypoints and can also be downloaded to

the mission planner software in a reasonable amount of time.

The waypoints generated by the mission selection logic are packaged into a Python-specific
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binary format called a “pickle”. This binary data is sent via TCP to the antenna tracker ground

station computer and unpacked. The TCP link ensures that the data arrives in a reliable order and

preserves the data integrity despite the latent and lossy cellular connection. A separate software

running in the antenna tracker initiates the MAVLink protocol with the aircraft via a 900 MHz

link. Although this link is also highly-latent and is prone to packet-loss, it is sufficient for the low

data stream required by the waypoint sending protocol. The mission selection logic will wait until

the aircraft is clear of the impending waypoint write before sending the next pickle to the antenna

tracker. The mission selection initiates the process by sending a MISSION COUNT command with

Figure 3.9: Network diagram for the TOL.

an integer designating the number of waypoints it intends to send. The PixHawk acknowledges

this request by sending a MISSION REQUEST with an integer designating the waypoint index to

deliver. PixHawk interprets the delivery of a waypoint as an acknowledgement from the mission

selection logic and requests the next waypoint. A timeout is set in the selection logic to avoid being

trapped in a dead connection. The process is restarted from the beginning once connection has

been reestablished.
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Chapter 4

Assessment in Severe Storm Simulations

This chapter provides results and analysis of the trajectory optimization layer in a simulated

storm environment. A set of simulated storm data is used to validate the wind database system

and the linear interpolation scheme for the trajectory optimization layer. The simulated storm

data sets are provided by Jerry Straka of the School of Meteorology at the University of Oklahoma

[19, 8, 7, 12, 13]. The set is planar two-dimensional data for a single instant in time for an altitude
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Figure 4.1: Simulated storm data.

of 500 meters. Storm data is generated on a 210 by 210 grid with 500 meter resolution in a moving

reference frame that tracks the storm. Data includes rain, hail, and three-dimensional wind velocity

components (relative to the storm frame of reference). Atmospheric data such as rain and hail are
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useful for optimal path planning because they represent avoidance zones during path generation.

The storm simulation is aligned such that the positive y-axis corresponds to North. The storm data

including rain, hail, planar (x-y) wind speed, and the z-component of wind vector are useful for

detecting dense energy regions (Figure 4.1b). The primary purpose of the data will be to provide

the trajectory optimization layer with wind magnitudes and directions (Figure 4.1a).

4.0.5 Storm Approach

The guidance mission is simulated in a storm environment using identical optimization pa-

rameters and gains detailed in section 3. The simulation assumes that the sUAS approaches the

storm cell from the west and traverses to the east to approach the rear-flank downdraft (RFD)

(Figure 4.2). This region was selected as a penetration vector into the storm because of the average

wind flow towards the region of interest. The RFD contains high velocity winds and could present

a challenge for a sUAS autopilot without knowledge of the environment.

Figure 4.2: Region considered in the storm penetration simulation. Approach is from west to east.

Despite attempting to reach the same goal of 300 meters in the x-direction, the optimal

trajectory optimization was divided into three separate legs, each becoming more direct (Figure

4.3). While each optimization was initialized with a 150 meter leg length, the optimization routine
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shortened each leg until feasibility was satisfied. This demonstrates the adaptability of the TOL

with respect to dynamic localized environments. Without user intervention or tuning, the TOL

was able to generate three unique optimal trajectories and stitch them together to reach the goal

point.

Figure 4.3: A stitched guidance trajectory to penetrate the supercell and enter the RFD. Interpo-
lated wind vectors are shown in blue.

To understand the difference between the optimization behavior in an idealized wind shear

and simulated storm data, some properties of the wind field are examined. The average wind shear

of the simulated storm data set for the trajectory is 0.156s−1 which is significantly weaker than the

idealized 0.25s−1 used in validation tests. The differences between the first and last two legs of the

trajectory can be explained by the sudden change in vertical wind velocity. The average vertical

wind velocity for the first leg is approximately zero meters per second, but this quickly increases to

-0.65 meters per second for the final trajectory. The aircraft loses energy throughout the trajectory

because of this sinking air however the TOL was constrained to generate a trajectory towards a
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Figure 4.4: The sUAS states for the stitched guidance trajectory. Each color represents an optimized
leg. Red dashed lines indicate limits placed upon the optimizer.

pre-defined goal (300 meters in the x-direction) (Figure 4.4). In this trajectory, the sUAS drops

airspeed by climbing with a high flight-path angle. Due to the increased flight path angle, the

aircraft gains lift and airspeed follows suit. A maximum airspeed constraint forces the trajectory

to decrease flight path angle and level off. To satisfy the periodic constraint, the sUAS once again

pitches up just before transitioning to the next leg. The flight path angle, γ, demonstrates the

effect of an increasing downward wind over each leg. As the downward velocity increases, a high

angle of attack will force the sUAS downwards. Therefore, the TOL reduced the flight path angle

adjustments to avoid being forced to lose altitude.
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4.0.6 Loitering in the RFD

Once the sUAS has successfully navigated to the region of interest for atmospheric sampling,

a stitched guidance-loitering mission is engaged. Using the stitching algorithm (Algorithm 2), the

TOL plans guidance trajectories directly towards the sampling region and transitions to a loiter

trajectory. The region of interest for loitering flight is the rear-flank downdraft (Figure 4.5). Due

to the high wind speeds, a zero thrust loiter was not feasible in this region of the storm. While the

trajectory will use thrust to complete the loiter loop, the thrust constraint is penalized within the

objective function by setting thrust gain, kT , to 100.

Figure 4.5: Region considered for sampling the RFD. Approach is from west to east.

Although a feasible loitering trajectory for zero-thrust could not be found in this region of

the gust front, a small amount of thrust was required to achieve a different feasible solution (Figure

4.6). The loitering segment uses throttle when turning against the wind to prevent drifting out

of the loitering radius. This enables the aircraft to also soar up into the wind, gaining potential

energy to expend as it makes its return loop. The circular trajectory is expanded to fill the entire

loitering radius. This is because less control effort (thrust) is required to fly a larger radius circle.

If the kp gain is increased, the loitering circle becomes smaller at the expense of more thrust used.



www.manaraa.com

41

This presents a trade-off between loitering in a local region and the endurance of the sUAS. The

aircraft kinematics, as well as the current wind environment, will limit the size of a feasible circular

trajectory.

Once the sampling mission is satisfied, the sUAS navigates along the return trajectory,

planned from the apex of the loitering trajectory to allow the sUAS to seamlessly transition out of

the loitering trajectory. This return trajectory differs from the approach guidance segment due to

the air-relative aircraft heading. The sUAS proceeds to the start location, soaring into the wind

to gain energy. There is no final periodic altitude requirement for the return guidance mission. In

the simulation, the sUAS returns to the original x-y start coordinates with an increased altitude

of approximately ten meters. This gained potential energy can be expended during its return to

launch guidance trajectory.

Observing the evolution of the aircraft states in both the guidance and loitering missions, it

Figure 4.6: Stitched guidance and loitering mission in the RFD. The blue dotted line represents
the loitering radius.
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Figure 4.7: sUAS states for the approach, loiter, and return trajectory.

should be noted that there are rapid changes in CL as well as γ (Figure 4.7). This changes are due

to the lack of bounding any rate of change on these states. This could have implications on battery

usage from high-frequency changes to the elevator. A suitable controller may decide to perform a

smoothing on these inputs to avoid over-working the elevator servos.

Energy optimal trajectories within a simulated storm environment have been examined. In-

sight was developed on approaching the RFD to conserve the greatest amount of energy. A fully

stitched guidance and loitering trajectory was generated and assessed. The guidance mission was

investigated independently at first and then combined with a loiter trajectory near the observation

goal. The trajectory generated demonstrated that it may be feasible to plan an energy-aware tra-

jectory online during a severe storm UAS mission. To measure the performance of such a system

requires further investigation and simulation.
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Chapter 5

Flight Results

This chapter provides a flight assessment of the trajectory optimization layer. Flight ex-

periments to assess the EA-DDDAS framework were performed in June 2015 operating near the

Reese Airfield in Lubbock, Texas. The objectives of the deployment were to fully connect the EA-

DDDAS from end-to-end and perform a full system test. Objectives also included evaluating the

performance of each EA-DDDAS component individually operating within different configurations

and environments. The Trajectory Optimization Layer was successfully connected with the Lattice

Planner, AMOP, and aircraft. The Tempest sUAS was used as the flight platform, fitted with a

3DR PixHawk autopilot performing flight guidance and control. Several loitering trajectories were

planned and executed by the aircraft during the several days of flying. Stitched guidance trajecto-

ries were also flown nearly the entire length of the airfield to demonstrate the functionality of the

lattice planner guiding the TOL. This section will discuss three independent loitering trajectories

that were planned and flown as well as a stitched guidance trajectory flown diagonally across the

airfield (Figure 5.1).
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Figure 5.1: The Google Earth interface for the TOL.

5.1 Loiter 1 - 6/23/2015 10:41 AM

5.1.1 SNOPT Planned Trajectory

The first loitering mission of the day was designed to loiter within approximately a 100 meter

radius at 100 meters altitude relative to the ground. Measured winds were relatively calm with a

consistent flow out of the south heading north at a 7 meters per second average (Figure 5.2). Any

wind gradient was virtually non-existent within flight altitudes. Measured shears in any direction

of wind were less than 0.01 s−1 (Figure 5.3). The cost function used for the loitering missions were

dependent on thrust only and initialized with a 100 meter radius circle. The planned trajectory

deviated greatly from the initial seeded trajectory by aligning the longer legs at approximately a

45 degree angle into and out of the winds (Figure 5.4). The trajectory is colored to represent the

amount of instantaneous thrust used. The planned cost value is the resultant objective function

value, in this case 1
2T

2 for all collocation points. This allowed the aircraft to perform cyclical

porpoising motions as it flew upwind, taking advantage of the south to north wind flow. The

northeast corner of the trajectory also appears to be following a dynamic soaring trajectory by

climbing up into the wind and descending back out of the wind. Maximum theoretical thrust for

the trajectory never exceeded four Newtons (7.15% of maximum thrust for the Tempest, Figure
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Figure 5.2: Interpolated winds during the planned aircraft trajectory.

5.5). The coefficient of lift and roll rate states are often reaching their imposed limits while the

airspeed remains as low as allowed. The aircraft pitch and associated flight path angle modulate at

the same period as the airspeed cycle explaining the porpoising action of the trajectory. The aircraft

climbs until a minimum airspeed is reached and then descends again gaining airspeed. This cycle

could conceivably save throttle usage by gliding into the wind, exchanging kinetic and potential

energy while making forward progress (Figure 5.6). Evaluating the contributing components to

the air-relative energy of the aircraft, the dynamic soaring term is nearly zero (Figure 5.7). Drag

is removing energy from the system as expected and thrust conversely adds energy to the system.

Due to a vertical wind, albeit relatively low, there is a contribution to the total energy by means

of static soaring. For the latter half of the trajectory, this static soaring term brings the net energy

rate positive, countering the drag force. This increase in energy coincides with the pseudo-dynamic

soaring trajectory planned by the optimizer in the northeast corner of the loiter. The aircraft is
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Figure 5.3: Interpolated wind gradients during the planned aircraft trajectory.



www.manaraa.com

47

Figure 5.4: SNOPT generated trajectory.

Figure 5.5: The SNOPT planned states.

making turns in this area to conceivably gain as much as energy as possible before passing through
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Figure 5.6: Specific air-relative potential and kinetic energy for the planned trajectory.

to lesser vertical motion areas.

5.1.2 Flown and Baseline Trajectories

The trajectory was submitted to the PixHawk autopilot immediately after generation. The

assumption was made that the wind environment would remain relatively static between planning

and execution of the path. However the plan was generated with forecasted winds from the AMOP

in an attempt to predict the wind velocities ahead of time. The baseline flown trajectory was com-

manded by the flight crew to establish a rough comparison of the executed optimized trajectory

with a simple circular loiter path. The baseline trajectories were flown at the same altitude and

roughly the same location in an attempt to correlate wind velocities between the two trajectories

(Figure 5.8). Circular paths were generated by establishing a mission loiter waypoint at the appro-

priate altitude. The PixHawk autopilot then generates the control inputs to fly a coordinated turn
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Figure 5.7: Specific air-relative energy-rate for the planned trajectory.

about the point.

The plan was adhered to relatively well by the PixHawk waypoint and speed following con-

troller (Figure 5.8). The autopilot was not attempting to control aircraft pose other than inertial

position and airspeed. The controller struggled to maintain tracking during the static soaring

portion of the trajectory and instead used considerable amounts of throttle to compensate. The

planned and flown states follow the same increasing and decreasing trends (Figure 5.9). The roll

rate is does not match closely but the roll matches well, implying that the planned roll rate may

benefit by being run through a low pass filter to eliminate noise. For this particular experiment,

roll rate was not explicitly tracked so it had no impact on the PixHawk performance. The primary

difference between the two states is the thrust. Thrust for the flown trajectory is calculated by

dividing the measured power usage from the on-board battery by the corresponding airspeed. This
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Figure 5.8: Comparison of the planned, flown, and baseline trajectories.

neglects any inefficiencies due to power transfer from the propulsion battery to the propeller and

should be taken as a very rough estimate. Nevertheless, the trajectory cost is significantly higher

for the flown trajectory compared to the planned trajectory. This could be largely attributed to

the type of control scheme used by the PixHawk to track points in inertial space. Large amounts

of control effort were expended by the autopilot in an attempt to reduce cross-track error on the

planned trajectory. This would lead to large bursts of throttle usage, raising the measured cost

considerably. Another reason for the increased throttle usage could be an insufficient drag model

as part of the three dimensional point mass assumption. If significant drag contributions were

neglected, additional thrust would be required to compensate.
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Figure 5.9: Comparison of the planned, flown, and baseline states.

5.2 Loiter 2 - 6/23/2015 11:31 AM

5.2.1 SNOPT Planned Trajectory

Later in the same morning on the same day as the first test, additional tests were performed

with adjusted AMOP and Dual-Doppler configurations. The result also reflects the adaptability

of the system to generate energy optimal paths over short-periods of time, assuming new wind

field information is available. A substantial vertical wind component was present around this time,

while the wind remained at a steady nine to ten meters per second out of the South (Figure 5.10).

East-West winds were nearly non-existent. Unfortunately, the wind shear was calm in all directions

as well, preventing any chance of generating a dynamic soaring trajectory (Figure 5.11).

The SNOPT planned trajectory optimized the trajectory within the given wind field and

converged upon a zero thrust trajectory with a cost of 4.9E-7 (Figure 5.12). The trajectory increases

in altitude near the North end turn-around, indicating an increase in potential energy without the

use of thrust. The remaining trajectory is relatively flat and is aligned with direction of the South-

North winds. This trajectory is faster than the previous with an airspeed average of 23.4 meters
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Figure 5.10: Interpolated winds during the planned aircraft trajectory.

per second (Figure 5.13). This is also reflected in the decreased coefficient of lift and less periodic

longitudinal motion indicted by the steadier flight path angle. A small ∆t was also selected by the

optimizer to reduce the trajectory time length.

The kinetic and potential energy trade-off (Figure 5.14) reflects the simple race-track nature

of the trajectory. The aircraft initially loses kinetic energy as it climbs but gains a net positive

energy due to the upwards air motion. The aircraft then descends regaining air-relative kinetic

energy, but loses it quickly due to the increased tail-wind.

The specific energy rate again reveals the lack of any dynamic soaring contribution due to

the small gradient in the wind field (Figure 5.15). However, a large contribution from the static

soaring term sufficient to counter the drag force confirms the upwards motion on the North end of

the trajectory. Assuming this vertical wind motion remained, the aircraft could conceivably remain

in this area indefinitely.
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Figure 5.11: Interpolated wind gradients during the planned aircraft trajectory.
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Figure 5.12: SNOPT generated trajectory.

Figure 5.13: The SNOPT planned states.

5.2.2 Flown and Baseline Trajectories

Despite the encouraging zero-thrust trajectory, the baseline was a little less than four times

more efficient than the flown trajectory (Figure 5.16). Similarly to Loiter case 1, the trajectory
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Figure 5.14: Specific air-relative potential and kinetic energy for the planned trajectory.

appears to be too aggressive for the PixHawk waypoint following controller to manage. The large

cross-track error leads to increased thrust usage to reduce the distance error from the optimized

path. The aircraft does see a minor benefit from the region of vertical wind motion as the amount

of thrust required to increase altitude near the North end of the trajectory is reduced. The baseline

trajectory maintains a steady, constant velocity and bank angle, allowing for an efficiently flown

path (Figure 5.17). The baseline trajectory is also 1.4 times longer than the planned and flown

trajectories, indicating that a lower overall airspeed may have been a more prudent choice for

efficiency in the given wind environment.
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Figure 5.15: Specific air-relative energy-rate for the planned trajectory.

Figure 5.16: Comparison of the planned, flown, and baseline trajectories.
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Figure 5.17: Comparison of the planned, flown, and baseline states.
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5.3 Loiter 3 - 6/23/2015 11:50 AM

5.3.1 SNOPT Planned Trajectory

For this flight result, the radar performed a velocity-azimuth display (VAD) analysis. This

assumes no vertical wind and averages over a complete rotation of the radar to calculate a single

horizontal wind velocity at a given altitude, resulting in wz to be zero (Figure 5.18). Therefore

no static soaring can be planned by the aircraft. While dynamic soaring is still possible, the other

components of the gradient are near zero as well (Figure 5.19). The airspeed is kept low to preserve

thrust (Figure 5.21) while flight path angle is adjusted frequently to maintain a high coefficient of

lift. Bank angle is also frequently adjusted, most likely for similar reasons.

Figure 5.18: Interpolated winds during the planned aircraft trajectory.

The planned trajectory (Figure 5.20) has a low thrust cost total of 34.1 by utilizing the

South-North wind to re-gain kinetic energy on the return leg. At the South end of the trajectory,

the aircraft turns and banks up into the wind, maximizing the energy gain potential from the
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Figure 5.19: Interpolated wind gradients during the planned aircraft trajectory.
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oncoming 10 meters per second wind. The remainder of the trajectory is kept short to minimize

thrust usage.

Figure 5.20: SNOPT generated trajectory.

This trajectory’s specific energy profile supports the evidence that the aircraft is gaining

kinetic energy from the wind to remain energy neutral throughout the flight (Figure 5.22). Besides

this and the brief use of throttle to re-gain kinetic energy in order to satisfy the periodic airspeed

constraint, the trajectory is trading kinetic for potential energy. Drag is the majority contribution

to the energy rate profile (Figure 5.23) and thrust is used sparingly to maintain the minimum

allowable airspeed of 12 meters per second. The dynamic and static soaring components of power

are nearly zero, as expected from the lack of any substantial wind gradient or vertical wind motion.
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Figure 5.21: The SNOPT planned states.

Figure 5.22: Specific air-relative potential and kinetic energy for the planned trajectory.
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Figure 5.23: Specific air-relative energy-rate for the planned trajectory.

5.3.2 Flown and Baseline Trajectories

The baseline trajectory is less efficient than the flown trajectory with a cost of 2719 and

505.85, respectively (Figure 5.24). The trajectory is followed well with the autopilot capturing the

climbing and descending turn on the South end of the trajectory. The flown trajectory also glides

for a portion of the path with zero thrust on the Eastern leg as it climbs into the oncoming wind flow

(Figure 5.25). In comparison with the baseline trajectory, which struggles to maintain a constant

altitude into oncoming flow, the flown trajectory is much more efficient. Despite the lack of a

significant wind gradient or vertical air motion, the trajectory optimization layer planned a more

efficient trajectory by relaxing the altitude constraints during the flight, while the end constraints

were still held to a periodic condition. As a result, the trajectory is approximately five times more

efficient than flying a constant altitude circle.
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Figure 5.24: Comparison of the planned, flown, and baseline trajectories.

Figure 5.25: Comparison of the planned, flown, and baseline states.

5.4 Summary of Results

Although three loiter trajectories were described in detail in the previous section, several

more trajectories were planned and flown during the two week experiment in Lubbock, TX in June
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2015. The full EA-DDDAS was implemented over four days of flights, each day containing multiple

flights and experiments. Although the majority of the results were not more efficient than their

baseline, the suggestions in this document may improve future experiment results.

Date Flight No. Time of Day (CST) Duration (sec) Cost Better than baseline?

6/22/2015 1.B 12:17:10 PM 55 6260 –
– 1.1 12:32:00 PM 35 5519 Yes

6/23/2015 1.B 10:34:05 AM 45 3207 –
– 1.1 10:41:06 AM 47 13382 No
– 1.2 10:56:17 AM 39 6258 No
– 2.1 11:32:00 AM 31 8237 No
– 2.B 11:39:31 AM 39 2723 –
– 2.2 11:50:09 AM 44 507 Yes
– 3.1 1:07:23 PM 50 3930 No
– 3.2 1:14:11 PM 49 5268 No
– 3.B 1:15:49 38 3068 –
– 3.3 1:30:58 PM 47 5398 No

6/24/2015 1.1 11:02:26 AM 38 6421 No
– 1.B 11:11:03 AM 53 1723 –
– 1.2 11:15:18 AM 41 6036 No
– 1.3 11:47:39 AM 41 3956 No

6/25/2015 Rest Day – –
6/26/2015 1.1 11:17:07 AM 100 –

– 2.1 2:03:57 PM 140 – –
– 3.1 4:26:31 PM 130 – –
– 3.2 4:42:19 PM 105 – –
– 3.3 5:07:35 PM 98 – –

6/27/2015 Motor Failure – – –

Table 5.1: A summary of flight results from the Lubbock, TX 2015 deployment.
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Chapter 6

Conclusion

6.1 Summary of Findings

In this work, a trajectory optimization software for sUAS was presented that enables long

endurance real-world flights for the purposes of performing persistent sampling in dynamic environ-

ments. In Chapter 1 the motivation for developing a trajectory optimization software in the context

of an EA-DDDAS was presented. In addition, the concept of dynamic soaring was introduced.

In Chapter 2, the optimization problem is presented and the aircraft equations of motion

are defined. The states, control inputs, and decision vector are defined for a 3D point mass model

sUAS. A nonlinear program is formulated as a nonlinear optimization problem that can be solved

explicitly by a software called SNOPT. The concept of guidance and loitering trajectories as base

classes are introduced and the notion of a longer-horizon lattice planner operating above the TOL

is described.

In Chapter 3, the implementation challenges and mitigations are discussed in detail. The

concept of a wind field database is introduced and the implementation of a MongoDB server op-

erating within the TOL is described. The trilinear interpolation technique using shape functions

is outlined. The trajectory optimizer C++ code is outlined and presented by its major sections,

including problem setup, execution, and stitching. The optimization parameters are described

and a new method for calculating the large, sparse, Jacobian matrix are introduced. Finally the

communication with the other EA-DDDAS components via the Mission Selection Logic (MSL) is

discussed in detail.
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In Chapter 4, simulations of the TOL are performed within the context of a supercell tornadic

storm. The simulation involves planning a penetrative trajectory into the rear flank downdraft of

the storm and performing a loitering mission within an area of potential meteorological interest. A

sample trajectory is planned and examined with respect to the wind field used by the optimizer.

The stitching functionality of the TOL is also demonstrated by autonomously planning a guidance

approach, loiter, and departure trajectory in real-time.

In Chapter 5, the trajectory optimization layer performance was assessed by conducting real

flight tests in Lubbock, TX. Flown loitering trajectories are compared to baseline trajectories flown

at approximately the same altitude and radius. Two of the three optimized trajectories examined

were shown to be less efficient than the baseline counterpart. The third loitering trajectory was

found to be more efficient by a factor of nearly five.

The lack of an appropriate guidance control layer and significant wind shear are believed

to be the causes of low performance by the flown trajectories. Due to the simplistic nature of

a waypoint following controller and the aggressiveness of the optimized paths, significant control

effort was required, in the form of thrust, to maintain a low cross-track error.

Despite the lack of any significant shear, the trajectory optimization layer generated paths

that were able to take advantage of small regions of upward air motion to reduce the impact

on thrust usage. Turning maneuvers that utilized the oncoming wind were also common in the

generated trajectories and in one instance led to a more efficient path.

The air-relative energy and energy rates were examined for each trajectory case. With each

case, the dynamic soaring term played a small role in the overall energy transfer of the trajectory.

The static soaring term was significant in two of the three flown trajectories and helped offset the

drag force. Thrust for the flown trajectories was calculated using measured on-board power and

its relationship to airspeed. However, this calculation of thrust is suspect due to the lack of any

inefficiency modeling between the flight battery and the actual thrust produced by the propeller.

The baseline trajectories may have outperformed the flown trajectories due to the control

logic governing their paths. The baseline loiters were controlled by maintaining a coordinated turn
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bank angle and airspeed for a given loiter radius. This considerably simpler controller may have

caused less abrupt changes in lift and thrust use, leading to more efficient trajectories.

In summary, the limitations of the prior path planning algorithm were identified and ad-

dressed. The trajectory optimization layer and its software improvements have been proven to

be capable of running in an online fashion to generate stitched, optimal trajectories for use in a

flight system. The lack of ideal conditions and a suitable trajectory following controller may have

contributed to less than ideal performance during the flight tests.

6.2 Future Work

Future work for this avenue of research could involve developing an effective trajectory track-

ing controller that not only tracks state position, but also airspeed, air-relative body angles, and

rates. This may improve path following performance as well as reduce the amount of control effort

used on reducing position error. The new controller could also take advantage of the optimizer

providing temporal information about the aircraft’s pose and roll rate.

An adjustment to the focus of the cost function could be made to instead attempt to optimize

power by minimizing the product of airspeed and thrust. This would better correlate with the

reduced battery-power usage on-board the aircraft, especially once a battery-thrust relationship is

modeled. This cost would capture the work done by the thrust upon the air by the propeller.

Future experiments could also include flying the EA-DDDAS framework within a severe

storm environment to realize any dynamic soaring or static soaring benefits. It may become easier

to discern the benefits in an environment where the baseline trajectory is highly inefficient due to

high winds. This further experimentation could be performed in tandem with developing a more

accurate energy model relating power usage of the flight battery with the thrust produced by the

sUAS propeller. This would enable the optimized trajectories to be better compared with the

actual flight performance of the aircraft.
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